

Detectors for Gamma-ray Diagnostics in Plasma

Izabella Zychor

National Centre for Nuclear Research (NCBJ) Otwock – Świerk, Poland

X-rays and gamma rays in plasma measurements with energies varying from keV up to MeV

$$
D + T \rightarrow \alpha + n
$$

\n⁹Be + $\alpha \rightarrow$ ¹³C \rightarrow ⁿ ¹²C $\ast \frac{\gamma(4.44 \text{ MeV})}{2}$ ¹²C _{g.s.}
\n¹⁶O + n \rightarrow ¹⁶N + p, \quad ¹⁶N \rightarrow ⁶N \rightarrow ¹⁶O $\ast \frac{\gamma(6.13 \text{ MeV})}{2}$ ¹⁶O _{g.s.}

$$
D + T \rightarrow \gamma(17 \text{ MeV}) + 5\text{He}
$$

In lab conditions we need radioactive sources to test detector systems

- **standard -ray sources**
	- **¹³⁷Cs, ²²Na, ⁶⁰Co and many other**
- **PuBe with 4.44 MeV -ray**
- PuC with 6.1 MeV y-ray

DETECTOR OVERVIEW

The choice of a particular detector type for an application depends upon the X-ray or gamma energy range of interest and the resolution and efficiency requirements.

Additional considerations include (high) count rate performance, the suitability of the detector for timing experiments and price (of course).

Main detector for gamma-ray diagnostics:

- **gas-filled detectors**
- **scintillation detectors**
- **semiconductor detectors**

Scintillation detectors use crystals that emit light when gamma rays interact with the atoms in the crystals (photoelectric effect, Compton effect, pair production).

The intensity of the light produced is proportional to the energy deposited in the crystal by the gamma ray.

The detectors are coupled to photodetectors that convert light into electrons and then amplify the electrical signal provided by those electrons.

Scintillation detectors can also be used to detect alpha- and betaradiation as well as neutrons.

The most important scintillator parameters include a detector resolution and a detector efficiency.

Scintillators

- CeBr₃, LaBr₃:Ce, Nal, Csl, GAGG, BGO, YAP, ...
- dimensions: $10\times10\times5$ mm³ to $3''\times3''$
- cuboid and cyllinder shapes

Photodetectors

- pin-diode (PiN)
- photomultiplier (PMT)
- silicon photomultiplier (multi pixel photon counter MPPC)

PROPERTIES

PMT

Advantages

- fast response enabling measurements at high counting rates
- high gain and extremely low excess noise factor resulting in good energy resolution
- large photosensitive area
- large linear dynamic range in which an output signal is proportional to a registered energy

Main drawback

• sensitivity to magnetic field

PiN

Advantages

- small dimensions
- low operating voltage
- immunity to magnetic field Main drawback
- gain $= 1$

MPPC

Advantages

- fast response
- high gain resulting in good energy resolution
- immunity to magnetic field Main drawbacks
- gain sensitivity to temperature and voltage bias
- limited dynamic range

Silicon-based photodetectors

MPPC - Multi-Pixel Photon Counter – is a silicon-based monolithic array of micro-pixel avalanche diodes operating in a Geiger mode. MPPC is characterized by large internal gain, high photon detection efficiency, high-speed response, excellent time resolution, wide spectral response, immunity to magnetic fields, resistance to mechanical shocks, low power/voltage operation and compactness.

MPPC is therefore an alternative to a photomultiplier tube if operating at high count rate in harsh radiation environment.

Due to the fact that properties of MPPC are strongly affected by temperature, it is necessary to stabilize MPPC operation under temperature variations.

Temperature and bias voltage dependence of the MPPC detectors

scintillator

PMT

¹⁰ Coordinated Working Group Meeting (CWGM) Warsaw, 17-19 June 2015

CeBr³ scintillators from SCIONIX 20 mm × **20** mm with outer dimensions of **28** mm × **24** mm

Coordinated Working Group Meeting (CWGM) 31 Apr 2014 11 Warsaw, 17-19 June 2015

3" × 3" CeBr3 from SCIONIX

Energy spectrum of 0.662 MeV -rays from a ¹³⁷Cs source measured with 1"×1" CeBr₃ scintillator

Response of 1"×1" CeBr³ scintillator to PuBe source emitting 4.44 MeV -rays

FEP (full energy peak) is detected at 4.44 MeV.

After annihilation of a positron inside the crystal, two 0.511 MeV photons are emitted. It is possible that one or two of those photons can escape a scintillator, which gives rise to the single escape peak (SEP) at 3.42 MeV and double escape peak (DEP) at 3.93 MeV.

3" x 3" CeBr³ + PMT

PuBe FEP at $E_\gamma = 4.44$ MeV

PuC FEP at $E_v = 6.13$ MeV

3" x 3" CeBr³ + PMT

PuBe FEP at $E_\gamma = 4.44$ MeV

PuC FEP at $E_v = 6.13$ MeV

Response of CeBr³ and LaBr³ :Ce to natural background radiation

Natural background: ⁴⁰K (1.461 MeV), ²⁰⁸Tl (2.615 MeV)

LaBr³ :Ce is contaminated also with naturally occurring ¹³⁸La decaying by electron capture or β– decay

Events due to internal contamination by actinides: 1.5-2.5 MeV

Izabella Zychor

Detection efficiency *vs.* **detector size**

FEP detection efficiency measured for CeBr3 scintillators

The results for 4.44 MeV and 6.13 MeV -rays are not available for the smallest sample because the mean free path is too long to produce FEP is in this scintillator during acceptable acquisition time.

Detection efficiency for different scintillators

10×10×5 mm³

1"×1"

FEP detection efficiency different scintillators

Energy resolution

Energy resolution for 1"×1" scintillators in the -ray energy range between 0.1 and 6.13 MeV

Doppler broadening effect linked to the emission of 4.44 MeV γ -rays from the excited state of ¹²C

Pulse shape

fast scintillator: 20 ns, low: 300 ns

Monte Carlo simulations with Geant4

Elements of a complete system for gamma diagnostics

- **detector**
- **electronics, e.g., to optimize a detection setup**
- **DAQ – data acquisition system for high count rates**

MTCD@ NCBJ MPPC Temperature Compensation Device

for real-time temperature monitoring and MPPC gain stabilization, necessary due to the fact that properties of MPPC are strongly affected by temperature

installed at JET in May 2015

providing a current limitation and filtering of the MPPC bias voltage and is using a measured dependence of a bias voltage on temperature to maintain a constant value of the MPPC gain

Dedicated MPPC PCB for detectors installed at JET in May 2015

DIGITAL NEUTRON GAMMA DNG@NCBJ

data acquisition system

for high resolution spectrometry measurements at Mcps event rates

- **DNG@NCBJ integrated into a single compact unit**
- **Measurements with DNG@NCBJ performed up to 2.2 Mcps**
- **Almost identical spectra obtained with DNG@NCBJ and commercially available CAEN Desktop Digitizer DT5720**
- **Easy to create data acquisition system for a multi-detector setup**
- **Off-line processing for setting optimization**

FWHM with DNG@NCBJ at 661.7 keV: 5.4%, at 3.4 MeV: 4.3%, at 4.4 MeV: 3.3%

Measurements performed with DNG@NCBJ and CAEN Desktop Digitizer DT5720 at count rate of 0.2 Mcps

Detection systems for gamma-ray diagnostics

- **design of gamma-ray detection systems meeting requirements of a particular experiment**
- **single detectors**
- **detectors in setups**
	- **gamma camera - for spatial characteristics**
	- **gamma spectrometer - for energetic characteristics**

GCU Gamma Ray Camera Upgrade GSU Gamma Ray Spectrometer Upgrade LRM Lost Alpha Gamma Rays Monitor

Three projects implemented under the EUROFusion Consortium in 2014-2017

JET Enhancements Programme WPJET4

Collaboration between NCBJ and IPPLM

S.Mianowski G.Boltruczyk M.Gosk S.Korolczuk P.Sibczynski L.Swiderski

and colleagues from **Nuclear Techniques & Equipment Department (NCBJ)**

60 years National Centre for Nuclear Research (NCBJ)

NCBJ pure/applied research profile combines nuclear power-related studies with various fields of subatomic physics (elementary particle physics, nuclear physics, hot plasma physics etc.).

Izabella Zychor